Annal Signward		Mahatma Gandhi University Kottayam				
Programme						
Course Name	Applied Ma	thematica	al Methods			
Type of Course	DSC C					
Course Code	MG4DSCM	MG4DSCMAT202				
Course Level	200-299	200-299				
Course Summary	undergradua numerical m	te program tethods to s transforr	nmes by en solve proble	nabling the st ems, to find F	tudents to ourier Ser	enhances the apply various ies Expansions solve Partial
Semester	4	Credits				4
Course Details	Learning	Lecture	Tutorial	Practicum	Others	Total Hours
	Approach	रशः स	म्लम	इनुमे	0	75
Pre- requisites,	Differentiati	on, Partial	differentia	tion and integ	gration	
If any	MGL	J-UGP	HON	IOURS)		

COURSE OUTCOMES (CO)

CO No:	Expected Course Outcome	Learning Domains	PO No:
	Upon the successful completion of the course, the student will be able to		
1	Apply appropriate numerical methods to solve algebraic and transcendental equations.	А	1
2	Find Fourier Series expansion of different types of functions.	А	3
3	Determine Laplace transforms and inverse Laplace transforms of functions	А	2

4	Solve Partial Differential Equations	Е	2				
*Remen	*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)						

COURSE CONTENT

Content for Classroom transaction (Units)

Module	Units	Course Description	CO No:	Hours			
1		Numerical Methods					
	1.1	Algebraic and Transcendental Equations, Bisection Method and Method of False Position	1				
	1.2	Iteration Method	1	15			
	1.3	Newton - Raphson Method	1				
		Problems (Practicum)	1				
	Metho	: Chapter 2 – Sections: 2.1 to 2.5. (Excluding Gen d) ems - Statements only	eralized Nev	wton's			
2		Fourier Series					
	2.1	Fourier Series of functions with period 2π	2				
	2.2	Fourier Series of functions with any period 2L	2				
	2.3	Fourier Series of even and odd functions,	2	- 20			
		Problems (Practicum)	2				
		Fext 2: Chapter 11 – Sections: 11.1 to 11.3 (Excluding half range series) Fheorems - Statements only					
3		Laplace Transforms					
	3.1	Laplace Transforms and Inverse Laplace Transforms	3				
	3.2	Properties of Laplace Transforms	3	20			
	3.3	Laplace Transforms of derivatives and integrals	3				

	3.4	Differentiation and Integration of Laplace transforms	3			
		Problems (Practicum)	3			
	Text 2	: Chapter 6 – Sections: 6.1, 6.2 & 6.6 (Excluding	solution of O	DEs)		
	Theor	ems - Statements only				
4		Partial Differential Equations				
	4.1	Methods of solution of $\frac{dx}{p} = \frac{dy}{Q} = \frac{dz}{R}$	4			
	4.2	Partial Differential Equations, Origin of First Order Partial Differential Equations	4	20		
	4.3	First Order Linear Partial Differential Equations	4	20		
		Problems (Practicum)	4			
	Text 3: Chapter 1 – Section: 3; Chapter 2 – Sections: 1, 2 &4 Theorems - statement only					
		Teacher Specific Contents				
5		an be either classroom teaching, practical session, j ed by the teacher concerned) This content will be evaluated interna		as		

MGU-UGP (HONOURS)

Practicum
Practicum is designed to provide supervised practical application of
theoretical knowledge and skills.
It's purpose is to encourage creativity and develop Problem

solving skills.

The practicum component is to be done in the classroom under the strict guidance of the teachers.

A minimum of 30 problems is to be solved, and a handwritten copy of the solutions should be kept in the department.

GANDH

Teaching and		Classroom Procedure (Mode of transaction)					
Learning Approach	Brainstorming Lecture, Explicit Teaching, Active Cooperative Lea						
		M	DDE OF ASS	SESSMENT	Г		
	Α	Continuous Co	omprehensiv	ve Assessme	ent (CCA) 30	Marks	
		Co	mponents		Mark Distr	ibution	
		Model Model	dule Test- I	T A	5 Mar	ks	
	2	Module Test- II			5 Marks		
		Module Test- III Module Test- IV			5 Marks		
					5 Marks		
		Assign	5 Marks				
		Quiz	5 Marks				
Assessment Types	В	End Se	E) 70 marks				
		Question Pattern					
		[Maximur	n Time 2 Ho	ours, Maxin	um Marks 70)]	
		Module	Part A	Part B	Part C	Total	
		wiodule	2 Marks	6 Marks	10 Marks	Total	
		Ι	2	2	1	5	
		II	2	2	2	6	

III	2	2	2	6
IV	2	2	1	5
Total no of questions	8	8	6	22
Number of questions to be answered	5	5	3	13
Total Marks	10	30	30	70

TEXT BOOKS:

1. Sastry, S. S. Introductory methods of Numerical Analysis,5th edition, PHI Learning Private Limited, 2013.

ANDA

- **2.** Kreyszig, Erwin. *Advanced Engineering Mathematics*, ninth edition, Wiley, India, 2006.
- 3. Sneddon, Ian N. *Elements of Partial Differential Equations*. 1st ed. McGraw-Hill. 1957

SUGGESTED READING:

- 1. Sastry, S.S. Engineering Mathematics Volume 1, 4th edition PHI, 2008.
- 2. Grewal, B. S., Higher Engineering Mathematics, 42nd Edition, Khanna Publishers
- 3. Muray R Spiegel. Advanced Calculus, Schaum's Outline series, 2010.
- 4. Jain, M. K., Iyengar, S. R. K., & Jain R. K. Numerical Methods for *Scientific and Engineering Computation*, 6th edition, New Age International Publishers. Delhi, 2012.

Syllabus

SOME SUGGESTIONS FOR TEACHER SPECIFIC CONTENTS:

Proofs of theorems from Modules I, II, III and IV

Errors in numerical computations, Generalized Newton's method

Fourier half range series

Solution of ordinary differential equations using Laplace Transforms

Integral surfaces passing through a given curve

ARTIN ANTONIA	Ν	Mahatr		ndhi Uni ayam	versity	y
Programme						
Course Name	Mathematica	l Tools for	· Computi	ng		
Type of Course	DSC C					
Course Code	MG4DSCMA	T203	NDH			
Course Level	200-299					
Course Summary	mathematics a cryptography, graph theory. depth-first se programming	This course provides a comprehensive introduction to discrete mathematics and algorithms, covering topics such as number theory, cryptography, Boolean algebra, logic gates, relations, tree structures and graph theory. Practical implementation involves coding tree traversal, depth-first search and breadth-first search algorithms using a programming language. Students gain both theoretical insights and hands -on experience applicable across computer science domains.				
Semester	4विट	Credits	मूतसः	रन्रते		4
Course Details	Learning	Lecture	Tutorial	Practicum	Others	Total Hours
Course Details	Approach	-1 3 -P		ouks)	0	75
Pre- requisites,	Basic understanding of integers and divisibility, basic algebraic					
If any	operations, set	theory and	d set operat	tions and bas	ic graph t	heory
	concepts.	DVL	labu	15		

COURSE OUTCOMES (CO)

CO No:	Expected Course Outcome	Learning Domains	PO No:
	Upon the successful completion of the course, the student will be able to		
1	Understand the fundamental concepts of number theory, including prime numbers and divisibility and Apply congruence in various mathematical scenarios and recognize its applications in Hashing and Cryptography.	А	1,2

2	Analyze the truth tables and logical operations associated with each type of logic gates.	An	1,2
3	Understand and apply relations & partial orders in different areas in computer science	А	1,2
4	Apply tree traversal algorithm, depth-first search algorithm and breadth-first search algorithm to solve real world problems.	Е	1,2

*Remember (K), Understand (U), Apply (A), Analyse (An), Evaluate (E), Create (C), Skill (S), Interest (I) and Appreciation (Ap)

COURSE CONTENT

Module	Units	Course Description	CO No:	Hours
1		Number Theory & Cryptography		
	1.1	Divisibility and modular arithmetic:- Division, Division algorithm, Modular arithmetic, Congruence and Basic properties of congruence.	1	
	1.2	Primes and Greatest common divisor:- Primes, Fundamental theorem of arithmetic (statement and problems only), Greatest common divisors and least common multiples, Euclidean algorithm, g.c.d as linear combination	1	17
	1.3	Applications of Congruences:- Hashing function, Pseudorandom Numbers Cryptography:- Classical Cryptography, Caesar Cipher	1	_
		Problems (Practicum)	1	
		Thapter 4 – Sections: 4.1, 4.3, 4.5 (check digits e ey cryptography excluded)	excluded) &	4.6
2	U	Boolean Algebra		

Content for Classroom transaction (Units)

	2.1	Boolean functions	2	
		Representing of Boolean functions	2	
	2.2	Sum of Products (SOP)		13
	2.3	Logic gates	2	
		Problems (Practicum)	2	
	Text 1: C	Chapter 12 – Sections: 12.1 to 12.3 (Adders excl	uded)	
3		Relations & Partial orders		
	3.1	Relations & properties	3	
	3.2	Representing relations	3	
	3.3	Equivalence relation	3	20
	3.4	Partial ordering & Hasse Diagrams	3	
		Problems (Practicum)	3	
	Text 1: C	Chapter 9 – Sections: 9.1, 9.3, 9.5 & 9.6 (9.6.1 &	2 9.6.3 only)	
4		विद्यया उरिष्ट्रसमइन्द्रते		
	4.1	Introduction to trees :- Trees, Properties of trees (without proof) Applications of trees :- Binary search trees, Prefix codes and Huffman coding	4	
	4.2	Tree traversal :- Traversal algorithms, Infix, Prefix and postfix notations	4	
	4.3	Spanning trees :- Introduction, Depth-first search algorithm (BFS), Breadthfirst search algorithms (DFS)	4	25
	4.4	Minimum spanning trees:- Algorithms for minimum spanning trees- Kruskal's algorithm and Prim's algorithm	4	
		Problems (Practicum)	4	
			4	

	Text 1: Chapter 11 – Sections: 11.1 (trees as models excluded), 11.2 (game trees excluded) 11.3, 11.4 & 11.5
	Teacher Specific Contents
	(This can be either classroom teaching, practical session, field visit etc. as
5	specified by the teacher concerned)
	This content will be evaluated internally

Practicum						
Practicum is designed to provide supervised practical application						
of theoretical knowledge and skills.						
It's purpose is to encourage creativity and develop Problem						
solving skills.						
The practicum component is to be done in the classroom under						
the strict guidance of the teachers.						
A minimum of 30 problems is to be solved, and a handwritten						
copy of the solutions should be kept in the department.						

		TOTTAYAM					
		Classroom Procedure (Mode of tra	insaction)				
Teaching and Learning	Direc	Direct instruction: Lecture Method, Tutorial ,Brainstorming Lectures, Explicit Teaching					
Approach	Interac	Interactive instructions: Active Cooperative Learning, Library Work an Group Discussion, Peer Learning, Authentic Learning					
		MODE OF ASSESSMEN	Г				
	Α	Continuous Comprehensive Assessment (CCA) 30 Marks					
		Components	Mark Distribution				
		Module Test- I	5 Marks				
		Module Test- II	5 Marks				
Assessment Types		Module Test- III	5 Marks				
		Module Test- IV	5 Marks				
		Assignment/Seminar	5 Marks				
		Quiz/Viva voce	5 Marks				

	В	End Semester Evaluation (ESE) 70 marks						
		Question Pattern [Maximum Time 2 Hours, Maximum Marks 70]						
		Module	Part A	Part B	Part C	Total		
		Module	2 Marks	6 Marks	10 Marks	Total		
		Ι	2	2	1	5		
		II	2	2	1	5		
		III	2	2	2	6		
		IV		2	2	6		
		Total no of questions	8	8	6	22		
		Number of questions to be answered	5	NES R	3	13		
		Total Marks	10	30	30	70		

TEXT BOOKS:

 Kenneth H Rosen, Discrete Mathematics and its Applications (Eighth Edition). Published by McGraw-Hill Education, 2 Penn Plaza, New York, NY 10121. Copyright c 2019 by McGraw-Hill Education

SUGGESTED READINGS:

- 1. Burton, David M. Elementary Number theory (Seventh edition), The McGraw Hill companies, 2009.
- 2. Clifford Stien., Robert L Drysdale., Kenneth Bogart. *Discrete Mathematics for computer scientists*; Pearson Education; Dorling Kindersley India Pvt Ltd.
- 3. Kenneth A Ross., Charles R.B.Wright., *Discrete Mathematics*; Pearson Education; Dorling Kindersley India Pvt Ltd.
- 4. Richard Johnsonbaugh. *Discrete Mathematics*. Pearson Education; Dorling Kindersley India Pvt Ltd.

SOME SUGGESTIONS FOR TEACHER SPECIFIC CONTENTS:

- Public Key Cryptography :- The RSA Cryptosystem
- Implement tree traversal algorithm, depth-first search algorithm and breadth-first search algorithm using any suitable programming language.
- Implement Kruskal's algorithm and Prim's algorithm using any suitable programming language.

Rear Section	Mahatma Gandhi University Kottayam							
Programme								
Course Name	Mathematical	Mathematical Techniques in Business Analytics						
Type of Course	DSC C	DSC C						
Course Code	MG4DSCMA	Г204						
Course Level	200 - 299	GAN	DHI					
Course Summary	The course ai techniques for interpolation ar	business a	and econor	nic decisio	n making	, focusing on		
Semester	4 Credits 4							
Course Details	Learning Approach	Lecture 3	Tutorial 0	Practical 1	Others 0	Total Hours 75		
Pre- requisites, If any	Functions, Graphing functions, Basics of differential and integral Calculus							

COURSE OUTCOMES (CO)

CO No:	Expected Course Outcome	Learning Domains	PO No:
	Upon the successful completion of the course, the student will be able to		
1	Understand interpolation and extrapolation and solve problems related to interpolation	А	1, 2
2	Calculate interpolation using Lagrange's interpolation formula and by use of operators	Е	1, 2
3	Apply graphs of linear and non - linear functions in business and economics	А	2, 3
4	Apply elementary algebra and calculus in economics and business problems and solve it mathematically	Е	2, 3

COURSE CONTENT

Content for Classroom transaction (Units)

Module	Units	Course Description	CO NO:	Hours
1		Interpolation		
	1.1	Interpolation and Extrapolation	1	
	1.2	Finite Differences and Operators	1	
	1.3	Newton's Forward Interpolation Formula	1	20
	1.4	Newton's Backward Interpolation Formula	1	
		Problems (Practicum)	1	
	Text 2 : (Chapter 16 – Sections : 16.1 to 16.5		
2		More on Interpolation		
	2.1	Central Formula; Lagrange's Interpolation Formula	2	
	2.2	Inverse Interpolation	2	1.5
	2.3	Polynomial Method, Use of Operators	2	15
		Problems (Practicum)	2	
	Text 2 : 0	Chapter 16 – Sections : 16.6 to 16.7		·
3		Linear and Non-Linear Functions in Business and Economics		
	3.1	Applications of Linear Equations in Business and Economics	3	
	3.2	Applications of Linear Functions for Business and Economics	3	
	3.3	Solving Quadratic Equations, Facilitating Nonlinear Graphing	3	20
	3.4	Applications of Nonlinear Functions in Business and Economics	3]

]	Problems (Practicum)	3			
	Text	1 : Ch	apter 2 – Section 2.8, Chapter 3 – Sections :	3.4 to 3.7	•		
4			Optimization Techniques using Calculus				
	4.]	l I	Functions of Several Independent Variables	4			
	4.2		Constrained Optimization problems with Lagrange Multipliers	4			
	4.2		Applications of definite integral in consumers' and producers' surplus	4	20		
]	Problems (Practicum)	4			
	Text	1 : Ch	apter 12 - Section 12.11, Chapter 13 - Sectio	ns 13.1 and 1	3.6		
5	Teac	her Sp	oecific Contents				
	-		be either classroom teaching, practical sess y the teacher concerned)	ion, field visi	t etc as		
	-		nt will be evaluated internally				
Teee			Classroom Procedure (Mode of tr	ansaction)			
Teac an Lear Appr	d ning	Grou	Direct Instruction, Brain Storming Approach, Interactive instruction, Group Discussion, Presentation by individual student/ group representatives				
			MODE OF ASSESSMEN	Т			
		A	MG Continuous Comprehensive Ass	essment (CC	CA)		
			Components	Mark Dist	Distribution		
			Module Test - I	5 Mai	arks		
			Module Test – II	5 Mai	5 Marks		
			Module Test – III	lule Test – III 5 Marks			
	Assessment Types		Module Test - IV	5 Marks			
			Assignment/ Seminar	5 Mar	∶ks		
			Quiz/ Viva voce	5 Mar	·ks		
		В	End Semester Examination (E	SE) 70 mark	5		
			Question Pattern				

	[Maximum Time 2 Hours, Maximum Marks 70]					
	Module	Part A	Part B	Part C	Total	
		2 Marks	6 Marks	10 Marks		
	Ι	2	2	2	6	
	Ш	2	1	2	5	
	III	2	3	1	6	
	IV	2	2	1	5	
	Total no of questions	8	8	6	22	
	Number of questions to be answered	5	5	3	13	
TEXT BOOKS	Total Marks	10	30	30	70	

TEXT BOOKS

- 1. Edward T Dowling, *Mathematical Methods for Business and Economics*, Schaum's Outline Series, McGraw Hill
- 2. Ram Krishna Ghosh, Suranjan Saha, Business Mathematics and Statistics(Algebra, geometry and Business Statistics), New Central Book Agency (P) Ltd.

SUGGESTED READINGS

- 1. Taro Yamne, *Mathematics for Economists-An elementary survey*, Prentice -Hall, Inc.
- 2. Robert Brechner, Contemporary Mathematics for Business and Consumers, Fifth Edition
- **3.** Das, N. G., Das, J K. Business Mathematics and Statistics, Tata McGraw-Hill (2012).
- 4. Martin Anthony, Norman Biggs, *Mathematics for economics and finance Methods and Modelling*, Cambridge University Press (2012).

SOME SUGGESTIONS FOR TEACHER SPECIFIC CONTENTS:

• Optimization Problems using graphs